
Particle Systems

Particle Systems

• Particle systems have been used extensively in computer animation
and special effects since their introduction in the early 1980’s

• The rules governing the behavior of an individual particle can be
relatively simple – and the complexity comes from having many
particles

• Usually, particles will follow some combination of physical and non-
physical rules, depending on the exact situation

Physics

Kinematics of Particles

• We will define an individual particle’s 3D position over time as r(t), or
just r

• By definition, velocity is the first derivative of position:

𝐯 𝑡 =
𝑑𝐫

𝑑𝑡

• And acceleration is the second derivative:

𝐚 𝑡 =
𝑑𝐯

𝑑𝑡
=

𝑑2𝐫

𝑑𝑡2

Uniform Acceleration

• How does a particle move when undergoing a constant acceleration?

𝐚 𝑡 = 𝐚0

𝐯 𝑡 = 𝐚𝑑𝑡׬ = 𝐯0 + 𝐚0𝑡

𝐫 𝑡 = 𝐯𝑑𝑡׬ = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2

Uniform Acceleration

𝐫 𝑡 = 𝐫0 + 𝐯0𝑡 +
1

2
𝐚0𝑡

2

• This shows us that a particle undergoing a constant acceleration will follow
a parabola

• Keep in mind that this is a 3D vector equation and there is potentially a
parabola equation in each dimension. Together, they will form a 2D
parabola oriented in 3D space

• We also see that we need two additional vectors 𝐫0 and 𝐯0 in order to fully
specify the equation. These represent the initial position and velocity at
time t=0

Newton’s First Law

• Newton’s First Law states that a body in motion will remain in motion
and a body at rest will remain at rest- unless acted upon by some
force

• This implies that a free particle moving out in space will just travel in a
straight line:

𝐚 = 0

𝐯 = 𝐯0
𝐫 = 𝐫0 + 𝐯0𝑡

Mass and Momentum

• We can associate a mass 𝑚 with each particle. We will assume that
the mass is constant:

𝑚 = 𝑚0

• We will also define a vector quantity called momentum 𝐩, which is
the product of scalar mass and vector velocity

𝐩 = 𝑚𝐯

Force

• Force is defined as the rate of change of momentum

𝐟 =
𝑑𝐩

𝑑𝑡

• If we assume that mass m is constant, we can expand this to:

𝐟 =
𝑑𝐩

𝑑𝑡
=
𝑑 𝑚𝐯

𝑑𝑡
= 𝑚

𝑑𝐯

𝑑𝑡
= 𝑚𝐚

𝐟 = 𝑚𝐚

Newton’s Second Law

• Newton’s Second Law says:

𝐟 =
𝑑𝐩

𝑑𝑡
= 𝑚𝐚

• This relates the kinematic quantity of acceleration 𝐚 to the physical
quantity of force 𝐟

Newton’s Third Law

• Newton’s Third Law says that any force that body A applies to body B
will be met by an equal and opposite force from B to A

𝐟𝐴𝐵 = −𝐟𝐵𝐴

• Put another way: every action has an equal and opposite reaction

• This is very important when combined with the Second Law, as the
two together imply the Law of Conservation of Momentum

Conservation of Momentum

• Remember that a force is a rate of change of momentum

• If Newton’s Third Law says that the forces in a system cancel out, then
the total change of momentum of the system must be 0

• Therefore, the total momentum in a system must remain constant

• This is the Law of Conservation of Momentum

Conservation of Momentum

• Conservation of Momentum is an important property to preserve in a
physical simulation

• However, for non-physical effects, we are allowed to break the rules

• Even for physically valid simulations, we will sometimes only implicitly
follow this rule. For example, we can explicitly apply an aerodynamic
drag force to a particle but only implicitly apply the equal and
opposite force to the air itself, as we aren’t actually simulating the air

Forces on a Particle

• A particle may be subjected to several simultaneous vector forces
from different sources

• All of these forces simply add up to a single total force acting on the
particle:

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

Newtonian Mechanics

• Newton’s Second Law relates the property of force to the kinematic
property of acceleration through a measureable constant mass:

𝐟 = 𝑚𝐚

• Forces are a very useful quantity to work with because of Newton’s Third
Law:

𝐟𝐴𝐵 = −𝐟𝐵𝐴
• And because they add up in a very simple way:

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

• These principles form the foundation of all Newtonian based simulations,
including solid dynamics, rigid body dynamics, and fluid dynamics

Integration

Integration

• Newtonian simulation involves working with forces

• As we’ve seen, forces relate to accelerations through Newton’s
Second Law f=ma

• Ultimately however, we need to compute positions in order to
advance the simulation forward and visualize what’s happening

• Position is the integral of velocity and velocity is the integral of
acceleration

• Therefore, the process of integration will be central to physics
simulation

Analytical (Symbolic) Integration

• If we have a relatively simple mathematical function, we can usually compute an
analytical integral

• For example, if our function is a polynomial like:

𝑓 𝑡 = 3𝑡2 + 4𝑡 + 5

• then we can compute the integral as

න𝑓 𝑡 𝑑𝑡 = 𝑡3 + 2𝑡2 + 5𝑡 + 𝑐

• Analytical integration calculates an exact solution to the integral.

Numerical Integration

• However, many mathematical functions can’t be integrated
analytically, and this applies to most of the situations we’ll be
interested in.

• Therefore, we will accept that we will rely on numerical integration
techniques throughout the entire quarter.

• Numerical integration uses iteration and approximation to compute
“brute force” results, and so can suffer from problems with accuracy
and stability.

• Still, we have little choice if we want to simulate complex problems,
so we must understand these properties in order to make use of
numerical integration techniques.

Forward Euler Integration

• The forward Euler method uses the derivative at the start of the time step
to advance the simulation forward

• For example, to compute the new velocity at time step i+1, we use the
acceleration computed at time step i and assume it holds constant for the
duration of ∆𝑡

𝐯𝑖+1 = 𝐯𝑖 + 𝐚𝑖∆𝑡

• For the position integration, we do essentially the same thing, except we
use the new velocity instead of the previous velocity

𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡

Particle Simulation

• Dynamics simulations generally follow a pattern like this:

Specify initial conditions for time t0
while (not finished) {

• Evaluate all forces in current configuration at time tn and use these to compute all
accelerations

• Integrate accelerations over some finite time step Δt to advance everything to new positions
(and velocities) at new time tn+1

• Display/store/analyze results
}

• Sure, the details will get more complicated, but in general, we are taking
finite steps forward in time and evaluating forces at each step

Particle Example

class Particle {

public:

void ApplyForce(vec3 &f) {Force+=f;}

void Integrate(float deltaTime) {

vec3 accel=(1/Mass) * Force;

Velocity += accel*deltaTime;

Position += Velocity*deltaTime;

Force=vec3(0);

}

private:

vec3 Position;

vec3 Velocity;

vec3 Force;

float Mass;

};

Energy

• The kinetic energy of a particle is
1

2
𝑚 𝐯 2

• There are also various forms of potential energy such (gravity, springs,
etc. can store energy as a potential)

• Energy in a system may convert between different forms (kinetic,
potential, thermal, electromagnetic…) but the total energy in a
system remains constant

• The subject of energy is important in physics, but Newtonian
formulations of the equations rarely make direct use of it

• We will therefore not discuss it much today, but it will come back
once or twice in later lectures

Basic Forces

Uniform Gravity

• A very simple, useful force is the uniform gravity field:

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝐠0

𝐠0 = 0 −9.8 0
𝑚

𝑠2

• It assumes that we are near the surface of the Earth and we can
approximate the gravity as constant in both magnitude and direction

• 9.8 m/s2 is a reasonable approximation, as it actually ranges from roughly
9.76 to 9.83 around the world due to variations in altitude and local
density (there are detailed maps of this available)

Inverse-Square Gravity

• If we are modeling orbital mechanics, planetary systems, or galaxies, we need to consider the full inverse-
square law of gravity acting between two bodies

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• Where G is the universal gravitational constant (2014 version):

𝐺 = 6.67408 × 10−11
𝑚3

𝑘𝑔∙𝑠2

• d is the distance between the two bodies: 𝑑 = 𝐫1 − 𝐫2

• And e is a unit length vector pointing in the direction of gravitational attraction (i.e., towards the other body)

Inverse-Square Gravity

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐺
𝑚1𝑚2

𝑑2
𝐞

• We need to consider the gravitational force acting on every pair of bodies

• In a system of n bodies, this means we need to compute a gravitational
force Τ𝑛 𝑛 − 1 2 times

• In terms of algorithm performance, this implies O(n2) performance, which
is potentially slow for large values of n

• It turns out that for galactic simulations with millions of particles, we can
actually achieve O(n log n) performance using some octree techniques, and
for some more limited cases, we can even achieve O(n) performance using
some Fourier techniques

Aerodynamic Drag

• Aerodynamic interactions are very complex and difficult to model accurately

• For particles, we can use a reasonable simplification to describe the total aerodynamic drag force on an
object:

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Where 𝜌 is the density of the surrounding fluid (air, water, etc.), 𝑐𝑑 is the coefficient of drag for the object, a
is the cross sectional area of the object, and e is a unit vector in the opposite direction of the velocity:

𝐞 = −
𝐯

𝐯

• Also, keep in mind that we really want the relative velocity, which is the different between the particle
velocity and the average velocity of the surrounding fluid

𝐯 = 𝐯𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝐯𝑓𝑙𝑢𝑖𝑑

Fluid Density: 𝜌

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The fluid density 𝜌 of air at 15o C and a pressure of 101.325 kPa
(14.696 psi) is 1.225 kg/m3 and is used as a common default value

• The fluid density 𝜌 of liquid water is 999.8 kg/m3 at 0o C and 997.0
kg/m3 at 25o C at sea level

Drag Coefficient: 𝑐𝑑

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• The aerodynamic drag force uses a unit-less constant 𝑐𝑑 called the
drag coefficient

• This number effectively quantifies the aerodynamic drag of the
particular shape, and typically ranges from around 0.01 (very
streamlined) to 1.5 (bluff body)

• A sphere has a 𝑐𝑑 around 0.47 and a cube has a 𝑐𝑑 around 1.05

• The Tesla Model 3 has a 𝑐𝑑 of 0.23 and a Jeep Wrangler has a 𝑐𝑑 of
0.58

Cross Sectional Area: 𝑎

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• In the aerodynamic drag equation above, a refers to the cross
sectional area of the object moving through the surrounding fluid

• This means the area when viewed from the direction of motion

• For a spherical object of radius r, it would be 𝜋𝑟2

Aerodynamic Drag

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Most of the values here are constants (𝜌, 𝑐𝑑, 𝑎), and e is just used to
specify the direction the force acts

• Therefore, when we really boil this down, we see that the
aerodynamic drag force is proportional to velocity squared

𝑓𝑑𝑟𝑎𝑔 ∝ 𝑣2

Springs

• We can use Hooke’s Law to model simple linear spring forces:

𝐟𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑠𝐱

• Where 𝑘𝑠 is the spring constant describing the stiffness of the spring
and x is a vector describing the displacement

• The spring force is therefore going to work against the displacement

• The direction of the force will be along the axis of the spring and will
pull if the spring is extended and push if the spring is compressed

Springs

• In practice, it’s nice to define a spring as connecting two
particles and having a rest length 𝑙0 where the spring
force is 0

• This gives us:

𝑥 = 𝐫1 − 𝐫2 − 𝑙0

𝐞 =
𝐫1−𝐫2

𝐫1−𝐫2

𝐱 = 𝑥𝐞

𝑙0

𝑙0𝑥

𝐫1 𝐫2

𝐫1 𝐫2

𝐱

Springs

• A spring applies equal and opposite forces to two particles, and
therefore explicitly obeys Newton’s Third Law

• They should also obey the Laws of Conservation of Momentum and
Conservation of Energy

• In practice however, how well they obey these laws is due to the
numerical integration scheme used

Dampers

• We can apply damping forces between particles:

𝐟𝑑𝑎𝑚𝑝 = −𝑘𝑑𝑣𝑐𝑙𝑜𝑠𝑒𝐞

• 𝑘𝑑 is the damping constant, 𝑣𝑐𝑙𝑜𝑠𝑒 is the closing velocity, and 𝐞 is a
unit vector that provides the direction (𝐞 works the same as with
springs)

• Dampers will oppose any difference in velocity between particles

• The damping forces are equal and opposite, so they should conserve
momentum, but they will remove energy from the system by design

Closing Velocity

• To calculate the damping force, we need to calculate the closing
velocity between two particles

• This is the rate that the two particles are approaching each other

𝑣𝑐𝑙𝑜𝑠𝑒 = 𝐯2 − 𝐯1 ∙ 𝐞

𝐫2𝐫1

𝐯2

𝐯1
𝐞

Combining Forces

• All of the different forces we’ve examined can be combined by simply
adding them together

• The total force on a particle is just the sum of all of the individual
forces

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

• In each step of the simulation, we compute all of the forces in the
entire system at the particular instant

• We then use those forces to integrate the accelerations to compute
new velocities and positions at some finite time step later

Particle Systems

Particle Properties

• Particles will always have fundamental properties like position and
velocity and mass

• In addition, they can have other useful properties:
• Color
• Size (radius?)
• Life span
• Other stuff…

• All of these properties are assigned to some initial value when a
particle is created and some or all may change over the life of the
particle according to various rules

Randomness

• Randomness is a key aspect of particle systems

• Usually, initial properties are given a range of values, and individual
particles are assigned a random value within that range

• The distribution over the range could be uniform or non-uniform
(such as Gaussian, etc.)

• It can be nice to specify a range as a min/max, or possibly as a
mean/variance

Random Direction Vector

• If we want to generate a random velocity, it is nice to be able to produce a
uniform spherical distribution of directions

• To generate a random direction vector 𝐝, we start with two random
numbers 𝑠 and 𝑡 in the [0…1] interval:

𝑢 = 2𝜋𝑠

𝑣 = 𝑡 1 − 𝑡

𝑑𝑥 = 2𝑣 ∙ cos 𝑢

𝑑𝑦 = 1 − 2𝑡

𝑑𝑧 = 2𝑣 ∙ sin 𝑢

Creation & Destruction

• Sometimes, we’ll have a particle system with a fixed number of
particles, but most often, we will want to create and destroy particles
on the fly

• It is nice to have various creation & destruction rules that can be
applied to a particle system to customize its behavior

• This implies that we need an efficient method of adding and removing
particles from the system

Efficient Particle Management

• In most situations, we can put some kind of upper limit on the number of
particles that a particular effect requires and pre-allocate a buffer to
support that

• If not, we can use a re-sizeable array such as a std::vector and dynamically
add new particles as needed, but they should be added as a single block
per frame, not one at a time

• To remove a single particle from the middle of the array, a good strategy is
to just replace it with the last particle and decrease the particle count. This
has the cost of copying a few bytes, rather than collapsing down the entire
array. This assumes of course, that the order of the particles is not relevant,
which might not always be the case…

Creation Rules

• When a particle is created, one must set its initial position, velocity,
and other attributes

• It is often nice to be able to specify some type of geometry of the
particle source, along with a particle creation rate

• For example, the source geometry could be a point, line, curve,
triangle, or even a full triangle mesh

• This source geometry could also animate over time…

Creating Particles from Triangle Meshes

• For example, let’s say we are given a triangle mesh and we want to create
particles from it

• We want to create new particles that are equally distributed over the total
surface area

• This means that when creating a new particle, we need to choose a
random triangle weighted by area so that large triangles are more likely
than small ones (this isn’t hard, but isn’t exactly trivial either)

• Once we’ve chosen a triangle, we need to choose a random point within
the triangle and use that as the initial position

• We can base the initial velocity off of the triangle normal, plus some
randomness

Random Point on a Triangle

• There are a variety of reasons why we might want to choose a
random point on a triangle

• Given a triangle defined by three vertices a, b, and c, and two random
numbers s and t in the [0…1] interval, we proceed by generating
random barycentric coordinates α and β:

α=sqrt(s)*t

β=1-sqrt(s)

p = a + α(b-a) + β(c-a)

Creation Rate

• For any particular particle source, we want to be able to specify its
creation rate in particles per second (PPS)

• If we are running a simulation at 60 frames per second and creating
particles at 1000 PPS, we can just create 1000/60 particles per frame
which is around 16 or 17

• However, if we want to create 5 per second, we need to create one
particle every 11 frames or so

• This means that we should keep track of the roundoff error over time
to ensure an accurate creation rate

Creation Rate

void ParticleSource::Update(float deltaTime) {

// Determine how many new particles to create this frame

float num=deltaTime*CreationRate+RoundOffError;

int newParticles=int(num);

RoundOffError=num-float(newParticles);

// Create particles

…

}

First Frame Adjustments

• If we are creating a fast stream of particles at 100 per frame, we want
them to appear uniformly distributed, rather that appearing as lots of
little puffs of 100 particles

• To fix this, we can assume the particle was created at some point
within the frame, rather than exactly at the beginning/end of the
frame

• This means that we should update newly created particles by a
random number times the time step, thus distributing them within
the frame

Destruction

• It is common to assign a particle a fixed life span at the time it is created.
Each frame, the life span decreases until it gets to 0 and the particle is
removed

• One can also add other destruction rules such as:
• Falls below some height value
• Outside of bounding region
• Collision with an object

• Note that it can also be nice to create new particles upon the destruction
of an old one. For example, fireworks can be done by launching an initial
particle and when it dies, it creates a bunch of new particles that inherit its
position and velocity for their initial conditions…

Particle Rendering

• Rendering is another key issue of particle systems

• There are various options:
• Points

• Line from last position to current position

• ‘Sprites’

• Mesh geometry (spheres, etc.)

