
Cloth Simulation
Steve Rotenberg

CSE169: Computer Animation

UCSD

Winter 2021



Cloth Simulation

• Cloth simulation has been an important topic in computer animation 
since the early 1980’s

• It has been extensively researched, and has reached a point where it 
is *essentially* a solved problem

• Today, we will look at a very basic method of cloth simulation. It is 
relatively easy to implement and can achieve good results. It will also 
serve as an introduction to some more advanced simulation topics



Cloth Simulation with Springs

• We will model cloth as a system of particles interconnected with spring-dampers

• Each spring-damper connects two particles, and generates a force based on their 
positions and velocities

• Each particle is also influenced by the force of gravity

• With those three simple forces (gravity, spring, & damping), we form the 
foundation of the cloth system

• Then, we can add some fancier forces such as aerodynamics, bending resistance, 
and collisions, plus additional features such as plastic deformation and tearing



Cloth Simulation with Springs

•Particle

Spring-damper

• • •

•••

•

•

•
• •

••
• •

•



Particle

𝐫 : position

𝐯 : velocity

𝐚 : acceleration

𝑚 : mass

𝐩 : momentum

𝐟 : force

𝐫
𝐯

𝐩 = 𝑚𝐯

𝐚 =
1

𝑚
𝐟

𝐟 =෍𝐟𝒊



Summation of Forces

• At any given instant, multiple forces will be acting on each particle

• These will just add up to a single total force

𝐟𝑡𝑜𝑡𝑎𝑙 =෍𝐟𝑖

• We’ll often drop the subscript and just write 𝐟𝑡𝑜𝑡𝑎𝑙 as 𝐟



Forward Euler Integration

• Once we’ve computed all the forces on a particle, we can use Newton’s 
Second Law to compute its acceleration

𝐚 =
1

𝑚
𝐟

• Then, we use the acceleration to advance the particle by some time step ∆𝑡
using the forward Euler integration scheme

𝐯𝑖+1 = 𝐯𝑖 + 𝐚∆𝑡

𝐫𝑖+1 = 𝐫𝑖 + 𝐯𝑖+1∆𝑡



Physics Simulation

specify initial conditions

while (not finished) {

// Simulate

1. Compute all forces

2. Integrate motion

// Draw or store results…

}



Physics Simulation (slightly more complex)

specify initial conditions

while (not finished) {

// Apply user interactions and other logic…

// Simulate

1. Compute all forces

2. Integrate motion

3. Apply constraints (collisions)

// Draw or store results…

}



Cloth Simulation

1. Compute Forces
For each particle: apply gravity
For each spring-damper: compute & apply spring-damper forces
For each triangle: compute & apply aerodynamic forces

2. Integrate Motion
For each particle: compute acceleration and apply forward Euler integration

3. Apply Constraints
For each particle: if intersecting, push to legal position & adjust velocity



Ropes & Solids

• We can use this exact same particle & spring-damper scheme to 
simulate ropes, solids, and similar objects

•

•

•

•
•

•

• •
•

•
•

••



Forces



Uniform Gravity

• A very simple, useful force is the uniform gravity field:

𝐟𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝐠0

𝐠0 = 0 −9.8 0
𝑚

𝑠2

• It assumes that we are near the surface of the Earth and we can 
approximate the gravity as constant in both magnitude and direction

• 9.8 m/s2 is a reasonable approximation, as it actually ranges from roughly 
9.76 to 9.83 around the world due to variations in altitude and local 
density (there are detailed maps of this available)



Springs

• We can use Hooke’s Law to model simple linear spring forces:

𝐟𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑠𝐱

• Where 𝑘𝑠 is the spring constant describing the stiffness of the spring 
and 𝐱 is a vector describing the displacement

• The spring force is therefore going to work against the displacement

• The direction of the force will be along the axis of the spring and will 
pull if the spring is extended and push if the spring is compressed



Springs

• In practice, it’s nice to define a spring as connecting two 
particles and having a rest length 𝑙0 where the spring 
force is 0

• This gives us:

𝑥 = 𝑙0 − 𝐫2 − 𝐫1

𝐞 =
𝐫2−𝐫1

𝐫2−𝐫1

𝐱 = 𝑥𝐞

𝑙0

𝑙0𝑥

𝐫1 𝐫2

𝐫1 𝐫2

𝐱



Springs

• A spring applies equal and opposite forces to two particles, and 
therefore explicitly obeys Newton’s Third Law

• They should also obey the Laws of Conservation of Momentum and 
Conservation of Energy

• In practice however, how well they obey these laws is due to the 
numerical integration scheme used



Dampers

• Like a spring, a damper can connect between two particles

• It will create a force along the line connecting the particles that resists 
a difference in velocity along that line

• Car shock absorbers are examples of dampers



Dampers

• We can apply damping forces between particles:

𝐟𝑑𝑎𝑚𝑝 = −𝑘𝑑𝑣𝑐𝑙𝑜𝑠𝑒𝐞

• 𝑘𝑑 is the damping constant, 𝑣𝑐𝑙𝑜𝑠𝑒 is the closing velocity, and 𝐞 is a 
unit vector that provides the direction (𝐞 works the same as with 
springs)

• Dampers will oppose any difference in velocity between particles

• The damping forces are equal and opposite, so they should conserve 
momentum, but they will remove energy from the system by design



Closing Velocity

• To calculate the damping force, we need to calculate the closing 
velocity between two particles

• This is the rate that the two particles are approaching each other

𝑣𝑐𝑙𝑜𝑠𝑒 = 𝐯1 − 𝐯2 ∙ 𝐞

𝐫2𝐫1

𝐯2

𝐯1

𝐞



Spring-Dampers

• For convenience, we can combine a spring and a damper into a single 
object

• It will store three constants:
• Rest length: 𝑙0
• Spring constant: 𝑘𝑠
• Damping constant: 𝑘𝑑



Spring-Damper

• A simple spring-damper class might look like:

class SpringDamper {

float SpringConstant;

float DampingConstant;

float RestLength;

Particle *P1, *P2;

public:

void ComputeForce();

};



Spring-Damper Forces

1. Compute current length 𝑙 & unit vector 𝐞

𝐞∗ = 𝐫2 − 𝐫1
𝑙 = 𝐞∗

𝐞 =
𝐞∗

𝑙

2. Compute closing velocity 𝑣𝑐𝑙𝑜𝑠𝑒
𝑣𝑐𝑙𝑜𝑠𝑒 = 𝐯1 − 𝐯2 ∙ 𝐞

3. Compute final forces

𝑓 = −𝑘𝑠 𝑙0 − 𝑙 − 𝑘𝑑𝑣𝑐𝑙𝑜𝑠𝑒
𝐟1 = 𝑓𝐞

𝐟2 = −𝐟1

•

•𝐫1

𝐫2

𝐯2

𝐯1



Aerodynamic Drag

• In the last lecture, we defined a simple aerodynamic drag force on an object as:

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞

• Where 𝜌 is the density of the surrounding fluid (air, water, etc.), 𝑐𝑑 is the coefficient of drag for the object, a
is the cross sectional area of the object, and e is a unit vector in the opposite direction of the velocity:

𝐞 = −
𝐯

𝐯

• Also, keep in mind that we really want the relative velocity, which is the different between the particle 
velocity and the average velocity of the surrounding fluid

𝐯 = 𝐯𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝐯𝑓𝑙𝑢𝑖𝑑



Aerodynamic Force

• Today we will extend that to a simple flat surface force

𝐟𝑎𝑒𝑟𝑜 = −
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐧

• The only real difference is that this acts along the normal instead of in the 
opposite direction of velocity

• This models the directionally varying force on a flat surface angled to the 
airflow instead of a instead of the unidirectional drag force on a symmetric 
object

• Note that this is a major simplification of true aerodynamic interactions, 
but it’s a good model to start with



Aerodynamic Force

𝐯

𝐯

𝐟𝑎𝑒𝑟𝑜 = −
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐧

𝐟𝑑𝑟𝑎𝑔 =
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐞 𝐞 = −

𝐯

𝐯



Aerodynamic Constants

𝐟𝑎𝑒𝑟𝑜 = −
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐧

• The fluid density 𝜌 of air at 15o C and a pressure of 101.325 kPa 
(14.696 psi) is 1.225 kg/m3 and is used as a common default value

• The drag coefficient 𝑐𝑑 for a flat plate is around 1.28, so we should 
use at least 1.0 or more

• The cross-sectional area 𝑎 will actually vary as the surface changes its 
angle to the airflow or if the surface area itself changes



Aerodynamic Force

• For our cloth, we will assume the surface is made up of a bunch of 
triangles (the same triangles we will use to render)

• Each triangle will compute an aerodynamic force and apply it to the 
three particles it connects

𝐫2•
•

• 𝐫3

𝐫1



Aerodynamic Force

• In order to compute our force:

𝐟𝑎𝑒𝑟𝑜 = −
1

2
𝜌 𝐯 2𝑐𝑑𝑎𝐧

• We will need to find the velocity 𝐯, normal 𝐧, and cross-sectional area 
𝑎 of the triangle (assuming 𝜌 and 𝑐𝑑 are constants)



Triangle Velocity

• For the velocity of the triangle, we can use the 
average of the three particle velocities

𝐯𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝐯1+𝐯2+𝐯3

3

• We actually want the relative velocity to the 
airflow, so we will then subtract off the velocity 
of the air itself

𝐯 = 𝐯𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐯𝑎𝑖𝑟
𝐯2

𝐯3

𝐯1

𝐯𝑠𝑢𝑟𝑓𝑎𝑐𝑒

••

•



Triangle Normal

• The normal of the triangle is

𝐧 =
𝐫2−𝐫1 × 𝐫3−𝐫1

𝐫2−𝐫1 × 𝐫3−𝐫1

𝐫2

𝐫3

𝐫1

𝐧

••

•



Cross Sectional Area

• The area of the triangle is

𝑎0 =
1

2
𝐫2 − 𝐫1 × 𝐫3 − 𝐫1

• But we really want the cross-sectional area 
which is the area viewed from the direction of 
the airflow

𝑎 = 𝑎0
𝐯

𝐯
⋅ 𝐧

•

•

𝐯

𝐯

𝐧



Aerodynamic Force

• The final force is assumed to apply over the entire triangle

• We can simply apply 1/3rd of the total force to each of the three 
particles connecting the triangle



Bending Forces

• If we arrange our cloth springs as they are in 
the picture, there will be nothing preventing 
the cloth from bending

• This may be fine for simulating softer cloth, 
but for stiffer materials, we may want some 
resistance to bending

• • •

•••

•

•

•
• •

••
• •

•



Bending Forces

• A simple solution is to add more springs, 
arranged in various patterns, such as the one 
in the picture

• The spring constants and damping factors of 
this layer might need to be tuned 
differently…

• • •

•••

•

•

•
• •

••
• •

•



Collisions

• General purpose collision detection with 
cloth is quite complicated, as one must 
consider self-collisions between 
multiple moving components

• We will discuss some collision detection 
and response in the next lecture



Plastic Deformation

• An elastic deformation will restore back to its un-deformed state 
when all external forces are removed (such as the deformation in a 
spring, or in a rubber ball)

• A plastic deformation is a permanent adjustment of the material 
structure (such as the buckling of metal)



Plastic Deformation

• We can add a simple plastic deformation rule to the spring-dampers

• We do so by modifying the rest length

• Several possible rules can be used, but one simple way is to start by defining an elastic 
limit and plastic limit

• The elastic limit is the maximum deformation distance allowed before a plastic 
deformation occurs

• If the elastic limit is reached, the rest length of the spring is adjusted so that meets the 
elastic limit

• An additional plastic limit prevents the rest length from deforming beyond some value

• The plastic limit defines the maximum distance we are allowed to move the rest length



Fracture & Tearing

• We can also allow springs to break

• One way is to define a length (or percentage of rest length) that will cause the 
spring to break

• This can also be combined with the plastic deformation, so that fracture occurs at 
the plastic limit

• Another option is to base the breaking on the force of the spring (this will include 
damping effects)

• It’s real easy to break individual springs, but it may require some real 
bookkeeping to update the cloth mesh connectivity properly…



System Stability



Conservation of Momentum

• Our simple spring-damper implementation should enforce 
conservation of momentum, due to the way we explicitly apply the 
equal and opposite forces

• Combined with the simple forward Euler integrator, this ensures that 
the total system momentum will remain constant over time (within 
floating point round-off errors)



Conservation of Energy

• True linear springs also should conserve energy, as the kinetic energy 
of particle motion can be converted to deformation energy in the 
springs

• The dampers however, are specifically intended to remove kinetic 
energy from the system (and convert it to heat)

• The Euler integration scheme we are using is not guaranteed to 
conserve energy, as it never explicitly deals with it as a quantity



Conservation of Energy

• If we formulate the equations correctly and take small enough time 
steps, the system will hopefully conserve energy approximately

• In practice, we might see a gradual increase or decrease of system 
energy over time

• A gradual decrease of energy implies that the system damps out and 
might eventually come to rest

• A gradual increase however, is not so nice…



Conservation of Energy

• There are particle schemes that conserve energy, and other schemes 
that preserve momentum (and/or angular momentum)

• It’s possible to conserve all three, but it becomes significantly more 
complicated

• This is important in engineering applications, but less so in 
entertainment applications

• Also, as we usually want things to come to rest, we explicitly put in 
some energy loss through controlled damping

• Still, we want to make sure that our integration scheme is stable 
enough not to gain energy



Simulation Stability

• If the simulation ‘blows up’ due to artificial energy gains, then it is 
said to be unstable

• This can happen when we have large spring constants or large 
damping constants

• The forward (or explicit) Euler integration scheme is the simplest, but 
can easily become unstable and require very small time steps in order 
to produce useful results



Backward Euler Method

• There is related method called backward (or implicit) Euler 
integration that actually can achieve perfect stability, even at very 
large time steps, however it still requires small time steps to achieve 
good accuracy

• The backward Euler method is much more complex as it requires 
solving for all of the forces in the system as one large set of 
simultaneous nonlinear equations…



Other Integration Methods

• There are numerous other integration schemes (midpoint, Runge-
Kutta, Adams Moulton, general linear methods, etc.)

• Many of these have similar explicit and implicit forms

• Most of the explicit methods are focused more towards accuracy 
rather than stability, and have similar stability properties (or worse) 
than the forward Euler method

• For our purposes, the forward Euler method will be fine, but we need 
to be careful with the time step size



Adaptive Time Steps

• One powerful method for improving the stability of almost any 
integrator is use adaptive time steps

• With this method, we monitor the system stability and dynamically 
adjust the time step as necessary

• If the system gets less stable, we switch to smaller time steps

• As things stabilize, we can switch to larger time steps

• There are many other details, mainly relating to how exactly we 
monitor the current stability



Oversampling

• A simple approach to stabilizing the simulation (which would 
probably be good for project 4) is to use oversampling

• With this approach, we break a time step into a fixed number of 
smaller time steps

• For example, if with to simulate at 60 FPS, a single time step would be 
1/60th of a second

• If we want to do 10 oversamples, we would actually run 10 steps at 
1/600th of a second, and then draw the scene once



Project 4: Cloth Simulation



Project 4: Cloth Simulation

• Create a cloth simulation with spring-dampers
• Grid of spring-dampers

• Aerodynamic drag forces & adjustable wind speed

• Ground plane collision handling

• Fixed particles and effective user manipulation



Issues

• Tuning parameters

• Stability

• 2D symmetry

• Performance

• GPU

• Rendering



Advanced Cloth



Continuum Mechanics

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑤𝑜𝑟𝑙𝑑 𝑠𝑝𝑎𝑐𝑒



Collision Detection & Response

• “Robust Treatment of Collisions, Contact and Friction for 
Cloth Animation”, Bridson, Fedkiw, Anderson, 2002

• “Fast Continuous Collision Detection using Deforming Non-
Penetration Filters”, Tang, Manocha, Tong, 2010

• “Local Optimization for Robust Signed Distance Field 
Collision”, Macklin, Erleben, Muller, Chentanez, Jeschke, 
Corse, 2020



Yarn-Level Simulation

• “Simulating Knitted Cloth at the Yarn 
Level”, Kaldor, James, Marschner, 2008

• “Stitch Meshes for Modeling Knitted 
Clothing with Yarn-Level Detail”, Yuksel, 
Kaldor, James, Marschner, 2012

• “Homogenized Yarn-Level Cloth”, Sperl, 
Narain, Wojtan, 2020



Fiber-Level Simulation

• “Anisotropic Elasticity for Cloth, Knit and 
Hair Frictional Contact”, Jiang, Gast, 
Teran, 2017



Clothing Design & Dressing

• “Design Preserving Garment Transfer”, Brouet, 
Sheffer, Boissieux, Cani, 2012

• “Physics-driven Pattern Adjustment for Direct 3D 
Garment Editing”, Bartle, Sheffer, Kim, Kaufman, 
Vining, Berthouzoz, 2016



Motion & Attribute Capture

• “Garment Motion Capture Using Color-Coded 
Patterns”, Alexa, Marks, 2005

• “Data-Driven Elastic Models for Cloth: Modeling and 
Measurement”, Wang, O’Brien, Ramamoorthi, 2011

• “Detailed Garment Recovery from a Single-View 
Image”, Yang, Amert, Pan, Wang, Yu, Berg, Lin, 2016



Multi-scale Rendering

• “Structure-aware Synthesis for Predictive 
Woven Fabric Appearance”, Zhao, Jakob, 
Marschner, Bala, 2012

• “Multi-Scale Hybrid Micro-Appearance 
Modeling and Realtime Rendering of Thin 
Fabrics”, Xu, Wang, Zhao, Bao, 2019


